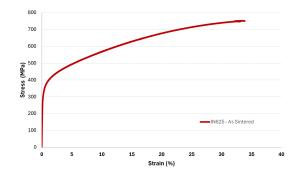

IN 625 Nickel Superalloy

RAPIDIA

COMPOSITION

ELEMENT	AMOUNT (WT%)	
Nickel	Bal.	
Chromium	20-23	
Molybdenum	8-10	
Iron	5 (max)	
Niobium	3.15-4.15	
Cobalt	1 (max)	
Manganese	0.5 (max)	
Silicon	0.5 (max)	
Aluminum	0.4 (max)	
Titanium	0.4 (max)	
Carbon	0.1(max)	
Phosphorus	0.015 (max)	
Sulfur	0.015 (max)	



MECHANICAL PROPERTIES

	STANDARD	WROUGHT AMS 5599 ¹	RAPIDIA AS-SINTERED
Ultimate Tensile Strength (MPa)	ASTM E8	830	750
Yield Strength (MPa)	ASTM E8	410	340
Elongation at Break (%)	ASTM E8	30	34
Hardness (HRB)	ASTM E18	96	82-84
Corrosion Resistance ²	ASTM F1089	Pass	Pass
Relative Density (%) ³	ASTM B311	100	97

¹ Minimum values for wrought AMS 5599.

³ Based on a theoretical density of 8.44 g/cc.

All data represents samples with ~10 mm printed and ~6 mm after machined thickness - sintered in around 12 hours using Rapidia's F2 Vacuum Furnace. All characterization was performed in-house at Rapidia. Values listed are the samples printed in the XY-plane. Values for samples printed along the Z-axis can be lower depending on print quality. Note that material performance is influenced by numerous factors such as print quality, furnace loading, and part thickness and geometry.

² Assessed by boil test and copper sulfate test.